Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 71(3): 1364-72, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15746339

RESUMO

In Streptococcus thermophilus, lactose is taken up by LacS, a transporter that comprises a membrane translocator domain and a hydrophilic regulatory domain homologous to the IIA proteins and protein domains of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). The IIA domain of LacS (IIALacS) possesses a histidine residue that can be phosphorylated by HPr(His~P), a protein component of the PTS. However, determination of the cellular levels of the different forms of HPr, namely, HPr, HPr(His~P), HPr(Ser-P), and HPr(Ser-P)(His~P), in exponentially lactose-growing cells revealed that the doubly phosphorylated form of HPr represented 75% and 25% of the total HPr in S. thermophilus ATCC 19258 and S. thermophilus SMQ-301, respectively. Experiments conducted with [32P]PEP and purified recombinant S. thermophilus ATCC 19258 proteins (EI, HPr, and IIALacS) showed that IIALacS was reversibly phosphorylated by HPr(Ser-P)(His~P) at a rate similar to that measured with HPr(His~P). Sequence analysis of the IIALacS protein domains from several S. thermophilus strains indicated that they can be divided into two groups on the basis of their amino acid sequences. The amino acid sequence of IIALacS from group I, to which strain 19258 belongs, differed from that of group II at 11 to 12 positions. To ascertain whether IIALacS from group II could also be phosphorylated by HPr(His~P) and HPr(Ser-P)(His~P), in vitro phosphorylation experiments were conducted with purified proteins from Streptococcus salivarius ATCC 25975, which possesses a IIALacS very similar to group II S. thermophilus IIALacS. The results indicated that S. salivarius IIALacS was phosphorylated by HPr(Ser-P)(His~P) at a higher rate than that observed with HPr(His~P). Our results suggest that the reversible phosphorylation of IIALacS in S. thermophilus is accomplished by HPr(Ser-P)(His~P) as well as by HPr(His~P).


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Streptococcus thermophilus/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Sequência de Bases , DNA Bacteriano/genética , Genes Bacterianos , Histidina/química , Cinética , Proteínas de Membrana Transportadoras/química , Dados de Sequência Molecular , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/química , Fosforilação , Homologia de Sequência de Aminoácidos , Serina/química , Streptococcus thermophilus/genética , Streptococcus thermophilus/crescimento & desenvolvimento
2.
Appl Environ Microbiol ; 70(8): 4596-603, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15294791

RESUMO

The lactic acid bacterium Streptococcus thermophilus is widely used by the dairy industry for its ability to transform lactose, the primary sugar found in milk, into lactic acid. Unlike the phylogenetically related species Streptococcus salivarius, S. thermophilus is unable to metabolize and grow on galactose and thus releases substantial amounts of this hexose into the external medium during growth on lactose. This metabolic property may result from the inability of S. thermophilus to synthesize galactokinase, an enzyme of the Leloir pathway that phosphorylates intracellular galactose to generate galactose-1-phosphate. In this work, we report the complementation of Gal(-) strain S. thermophilus SMQ-301 with S. salivarius galK, the gene that codes for galactokinase, and the characterization of recombinant strain SMQ-301K01. The recombinant strain, which was obtained by transformation of strain SMQ-301 with pTRKL2TK, a plasmid bearing S. salivarius galK, grew on galactose with a generation time of 55 min, which was almost double the generation time on lactose. Data confirmed that (i) the ability of SMQ-301K01 to grow on galactose resulted from the expression of S. salivarius galK and (ii) transcription of the plasmid-borne galK gene did not require GalR, a transcriptional regulator of the gal and lac operons, and did not interfere with the transcription of these operons. Unexpectedly, recombinant strain SMQ-301K01 still expelled galactose during growth on lactose, but only when the amount of the disaccharide in the medium exceeded 0.05%. Thus, unlike S. salivarius, the ability to metabolize galactose was not sufficient for S. thermophilus to simultaneously metabolize the glucose and galactose moieties of lactose. Nevertheless, during growth in milk and under time-temperature conditions that simulated those used to produce mozzarella cheese, the recombinant Gal(+) strain grew and produced acid more rapidly than the Gal(-) wild-type strain.


Assuntos
Galactoquinase/metabolismo , Galactose/metabolismo , Proteínas Recombinantes/metabolismo , Streptococcus/enzimologia , Animais , Meios de Cultura , Galactoquinase/genética , Teste de Complementação Genética , Concentração de Íons de Hidrogênio , Lactose/metabolismo , Leite/metabolismo , Proteínas Recombinantes/genética , Streptococcus/genética , Streptococcus/crescimento & desenvolvimento
3.
J Bacteriol ; 185(23): 6764-72, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14617640

RESUMO

The oral bacterium Streptococcus salivarius takes up lactose via a transporter called LacS that shares 95% identity with the LacS from Streptococcus thermophilus, a phylogenetically closely related organism. S. thermophilus releases galactose into the medium during growth on lactose. Expulsion of galactose is mediated via LacS and stimulated by phosphorylation of the transporter by HPr(His approximately P), a phosphocarrier of the phosphoenolpyruvate:sugar phosphotransferase transport system (PTS). Unlike S. thermophilus, S. salivarius grew on lactose without expelling galactose and took up galactose and lactose concomitantly when it is grown in a medium containing both sugars. Analysis of the C-terminal end of S. salivarius LacS revealed a IIA-like domain (IIA(LacS)) almost identical to the IIA domain of S. thermophilus LacS. Experiments performed with purified proteins showed that S. salivarius IIA(LacS) was reversibly phosphorylated on a histidine residue at position 552 not only by HPr(His approximately P) but also by HPr(Ser-P)(His approximately P), a doubly phosphorylated form of HPr present in large amounts in rapidly growing S. salivarius cells. Two other major S. salivarius PTS proteins, IIAB(L)(Man) and IIAB(H)(Man), were unable to phosphorylate IIA(LacS). The effect of LacS phosphorylation on growth was studied with strain G71, an S. salivarius enzyme I-negative mutant that cannot synthesize HPr(His approximately P) or HPr(Ser-P)(His approximately P). These results indicated that (i) the wild-type and mutant strains had identical generation times on lactose, (ii) neither strain expelled galactose during growth on lactose, (iii) both strains metabolized lactose and galactose concomitantly when grown in a medium containing both sugars, and (iv) the growth of the mutant was slightly reduced on galactose.


Assuntos
Proteínas de Bactérias , Proteínas de Escherichia coli , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte de Monossacarídeos , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/fisiologia , Fosfoproteínas Fosfatases/fisiologia , Streptococcus/metabolismo , Simportadores , Autorradiografia , Meios de Cultura , Eletroforese em Gel de Poliacrilamida , Galactose/metabolismo , Lactose/metabolismo , Proteínas de Membrana Transportadoras/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/análise , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Fosfoproteínas Fosfatases/análise , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Streptococcus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...